目前在工业生产的微细粒赤铁矿山是磨矿粒度8%为22μm的湖南祁东铁矿,该矿采用长沙矿冶研究院的絮凝脱泥-反浮选工艺流程建成的3万t/a量的选矿厂,在原矿品位TFe32.46%的条件下,得到铁精矿产率35.33%,铁精矿品位63.2%,铁率68.59%的工业生产指标。微细粒贫赤铁矿的关键技术低成本发微细粒赤铁矿,选矿技术方面的工作仍然是围绕着能丢早丢,能收早收,限度提率,节约成本而进行的,除了要重视多碎少磨,阶段磨选外,还有如下3个方面的工作应引起重视。
无锡征图钢业有限公司
热轧精密钢管用连铸圆管坯板坯或初轧板坯作原料,经步进式加热炉加热,高压水除鳞后进入粗轧机,粗轧料经切头、尾、再进入精轧机,实施计算机 控制轧制,终轧后即经过层流冷却和卷取机卷取、成为直发卷。直发卷的头、尾往往呈舌状及鱼尾状,厚度、 宽度精度较差,边部常存在浪形、折边、塔形等缺陷。其卷重较重、钢卷内径为760mm。将直发卷经切头、 切尾、切边及多道次的矫直、平整等精整线后,再切板或重卷,即成为:热轧钢板、平整热轧钢卷、纵切带等产品。热轧精整卷若经酸洗去除氧化皮并涂油后即 成热轧酸洗板卷。(1)合理选材。对精密复杂模具应选择材质好的微变形模具钢(如空淬钢),对碳化物偏析严重的模具钢应进行合理锻造并进行调质热,对较大和无法锻造模具钢可进行固溶双 *4Q355B方管无锡Q355方管
用油酸钠构成的疏水性絮凝物,用浮选法很简单收回。含TFe15%的赤铁矿和石英混合给矿,经粗选收回率到达94%,铁精矿档次为46%。微纤细磁性铁矿藏在浮选之前进行剪切絮凝,可显着进步收回率。磁复合絮凝磁复合絮凝分选工艺,是近年来展起来的一种微细粒弱磁性铁矿分选新工艺,是指在高分子絮凝、疏水絮凝的基础上,添加磁种并置于外界磁场中,以强化絮凝效果,一起又坚持较好的挑选性。宋少先在pH调整剂、各种涣散剂、各种捕收剂和非极性油等条件实验的基础上,找到了微细粒大冶菱铁矿挑选性疏水絮凝磁选的较好剂条件。
采用新技术、冷拔方式生产高精度冷拔管──液压缸体与传统的切削工艺比较。具有以下特点:(1)生产效率高:用传统的方法生产一根内径420毫米。12米长的缸筒需1小时。用冷拔方法生产只需4分钟。(2)率高:由于镗孔的滚压头兼起导向作用。在切削过程中。毛坯管由于自重产生挠度。致使滚压头和镗走偏。造成废品。率只能达到60%左右。而用冷拔方法生产。率可达95%以上。(3)金属利用率高:用传统的镗孔方法缸体。金属利用率只有50-70%。
(2)模具结构设计要合理,厚薄不要太悬殊,形状要对称,对于变形较大模具要掌握变形规律,预留余量,对于大型、精密复杂模具可采用组合结构。
(3)精密复杂模具要进行预先热,消除机械过程中产生的残余应力。
(4)合理选择加热温度,控制加热速度,对于精密复杂模具可采取缓慢加热、预热和其他均衡加热的方法来减少模具热变形。
(5)在保证模具硬度的前提下,尽量采用预冷、分级冷却淬火或温淬火工艺。
(6)对精密复杂模具,在条件许可的情况下,尽量采用真空加热淬火和淬火后的深冷。
(7)对一些精密复杂的模具可采用预先热、时效热、调质氮化热来控制模具的精度。
(8)在修补模具砂眼、气孔、磨损等缺陷时,选用冷焊机等热影响小的修复设备以避免修补过程中变形的产生。
另外,正确的热工艺操作(如堵孔、绑孔、机械固定、适宜的加热方法、正确选择模具的冷却方向和在冷却介质中的运动方向等)和合理的回火热工艺也是减少精密复杂模具变形的有效措施。
为了节省用水避免下降钛液的浓度、添加浓缩担负、削减小度水量、避免部分水解,一般把第2次冲刷亚铁收回的水(小度水)用于第1次洗刷,因为硫酸亚铁在水中的溶解度比在钛液和硫酸中高,这样还能够下降亚铁在水洗时的复溶程度。为了避免硫酸亚铁在洗刷时复溶过多引起铁钛比升高,洗刷水的温度也不能太高,夏日运用冷水。在运用离心机别离亚铁时,因为亚铁在转古壁上的料层很薄,只需少数水洗刷即可到达较好的作用,并且离心和洗刷根本同步进行,这也是选用离心机别离比运用真空吸滤池的首要长处之一。
采用该技术对武钢大冶铁矿的强磁精矿、酒钢强磁中矿、陕西大西沟铁矿等富含碳酸铁矿物的铁矿石进行了试验研究,铁精矿品位可提高到百分之55~百分之6以上。褐铁矿石选矿技术由于褐铁矿中富含结晶水,因此采用物理选矿方法铁精矿品位很难达到百分之6,但焙烧后因烧损较大而大幅度提高铁精矿品位。另外由于褐铁矿在破碎磨矿过程中极易泥化,难以获得较高的金属率。褐铁矿选矿工艺有还原磁化焙烧—弱磁选、强磁选、重选、浮选及其联合工艺。简介:铜以其良好的导电和导热能力成为电子和电力工业领域里的和主要材料。为了达到所要求的性能标准,使用的几乎都是高纯度的铜。这篇文章主要讨论了这样的原因,同时还特别关注了一些根本的冶炼原则。其目的是要针对过去十年铜线领域里的相关发展展进一步的讨论。导体要求:近年来在解释贵重金属(即铜、银和金)的电子属性上已经取得了巨大的进步。这些元素显示出了很高的导电性能,因为它们的导电电子对于电场的运动几乎没有什么抵抗力。